Разработки дальневосточных ученых дадут возможность прогнозировать природные катастрофы
Тайфуны, которые ежегодно приходят в дальневосточный регион, приносят разрушения и наводнения, ущерб от них исчисляется десятками, а то и сотнями миллионов рублей. Еще больший вред приносят сильные цунами и землетрясения, которые, по счастью, случаются куда реже. Между тем, в арсенале науки появляются средства, которые могут быть использованы для прогнозирования опасных природных явлений. Как далеко продвинулись в своих исследованиях ученые, EastRussia спросила у заместителя председателя Дальневосточного отделения Российской академии наук, директора Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН (ТОИ ДВО РАН), академика РАН Григория Долгих.
От космоса до океана
– Григорий Иванович, есть ли в арсенале ученых какая-то аппаратура, с помощью которой можно предсказывать природные катастрофы?
– В Приморском крае на морской экспериментальной станции ТОИ ДВО РАН установлен комплекс приборов. Это лазерные деформографы, которые могут регистрировать смещения земной коры с точностью 10 пикометров (пикометр – одна триллионная часть метра – прим. ред.), лазерный нанобарограф – для регистрации изменений давления в атмосфере, и еще один прибор, который может фиксировать вариации давления в гидросфере.
Их создание стало возможным благодаря изобретению частотно-стабилизированных лазеров, обеспечивающих очень высокую точность измерений – условно, от 0 Герц.
Сейчас в мире чаще всего используются широкополосные сейсмографы, которые работают по принципу маятника. Как работает лазерный деформограф: есть две точки на земной коре, между ними бежит луч лазера, который с помощью интерференции снимает информацию, измеряя таким образом расстояние между двумя точками. Приборы могут стоять в любом месте, и измерять любые колебания. Это очень точный метод измерения – 10 в «минус» 24 степени метра. Размер атома 10 в «минус» десятой степени, а эти измерения еще точнее.
В 2017 году Нобелевскую премию по физике получили ученые из США из проекта LIGO. Им удалось зафиксировать гравитационные волны, запущенные столкновением двух черных дыр в космосе, в миллиарде световых лет от Земли. Для этого специалистами были разработаны большие, четырехкилометровые, приборы.
Наш прибор работает по такому же принципу, но отличается технически. В приборах проекта LIGO массивные зеркала, между которыми измеряется смещение, висят. В наших – стоят на поверхности Земли. К тому же они меньше – самый большой деформограф 52,5 метра в длину.
Работать над ним мы начали в 1979 году с помощью специалистов из Всероссийского НИИ физико-технических измерений «Дальстандарт». Сейчас мы делаем и разрабатываем такую, и не только такую, но более точную и современную аппаратуру, самостоятельно.
На основе лазерного деформографа был создан измеритель вариаций давления гидросферы. Главная его особенность в том, что он может «слышать» глубокий инфразвук. В приборе находится мембрана в нейтральном положении. Когда на нее давит вода, она «играет». Находящиеся внутри лазерный интерферометр и лазерная система регистрации с высокой точностью измеряют давление в воде. Эти измерения могут быть важны не только для научных изысканий, но и для прикладных областей, например, можно понять, что в воде находятся искусственные объекты.
Такими приборами мы можем измерять минутные, часовые, суточные и даже вековые колебания. Но, конечно, ни один прибор так долго еще работал. Так, лазерный деформограф работает стационарно с 2000 года.
Опасные подвижки и случайные открытия
– Жителей прибрежных регионов волнуют бедствия, вызванные цунами. Какие методы их прогнозирования существуют?
– Классический пример: под водой в земной коре происходит землетрясение магнитудой 7,2, делается предупреждение об опасности цунами. Предупреждение делают по географическому принципу и магнитуде – в разных регионах эта величина разная, но в основном считается, что цунами может вызвать землетрясение магнитудой от 7-7,2. Это не совсем так. Цунами вызывают поршневые подвижки дна вправо и влево, скользящие или вертикальные. Чтобы понять, ждать ли цунами, надо зарегистрировать не само землетрясение, а эти подвижки.
Наш лазерный деформограф – единственный в мире прибор, который точно может это сделать. В прошлом и позапрошлом годах наши ученые выпустили ряд публикаций в научных изданиях, где, основываясь на расчетах американских исследователей после конкретного сейсмособытия, это доказали. Тогда мы смогли на большом расстоянии – 17 000 километров – определить произошедшую величину смещения дна.
Высота цунами зависит от глубины моря. Если метровая подвижка произошла на глубине пяти метров, то никакого цунами не будет. А если на глубине трех километров… Представляете, какая масса воды сдвинулась? Это может привести к очень приличному цунами.
Но если брать скорость волны цунами, то она примерно в 10 раз меньше скорости самой деформационной аномалии. Этот люфт во времени может помочь прогнозировать опасные явления.
– Это уже происходит?
– 26 декабря 2004 года в Индийском океане произошло землетрясение, вызвавшее смертоносное цунами, которое унесло жизни около 300 000 человек. Перед катастрофой деформографом была сделана запись, на которой отчетливо видно «ступеньку». Интересно, что работавший в этом же районе широкополосный японский сейсмограф ничего подобного не зарегистрировал.
Мы, конечно, предполагали, что можем «увидеть» эту подвижку, но конкретных примеров не было. Открытие было сделано, можно сказать, случайно. В 2007 году я начал обрабатывать информацию, начал искать, с чем она могла бы быть связана. Оказалось – с землетрясением в Индийском океане. «Ступенька» пришла к нам всего через 5-7 минут после толчка, скорость распространения данных была примерно 5 700 метров в секунду. А до побережья цунами добралось через два часа. Это время можно использовать для того, чтобы минимизировать его последствия.
Сейчас мы в институте планируем заняться тем, чтобы регистрировать такие подвижки в автоматическом режиме: прибор пишет, и в это же время нейросеть обрабатывает показания.
Чем опасен «голос моря»
– Как быть с тайфунами? Синоптики с большой долей вероятности могут предсказать, как поведет себя сформировавшийся тайфун, куда она пойдет, какое количество осадков принесет. Но можно ли предсказать их зарождение заранее?
– Еще в 1935 году советский геофизик Василий Шулейкин обнаружил явление, которое назвал «голос моря» - в атмосфере в районе прибрежной полосы был обнаружен звук в районе 7-8-9 Гц. Считается, что при определенной скорости ветра и определенной высоте волны возникают инфразвуковые колебания в атмосфере. Они действуют на земную кору, а сигнал по земной коре мы можем улавливать быстрее, чем по воздуху и воде.
Лазерные деформограф и нанобарограф могут регистрировать зоны образования этих волн, но природа самого явления до сих пор остается неизвестной. Кроме того, несколько лет назад мы обнаружили предвестники «голоса моря» – микросейсмы. При движении тайфуна они возникают в разных точках. Физику этого процесса также пока не удалось объяснить. Со временем мы разберемся, тем более что это может иметь очень большое значение.
Каждый орган человека имеет свой резонанс. Резонанс головы – 20-30 Гц, глаза – 40-100 Гц, 6-8 Гц – почек. 5-7 Гц вызывают у человека чувство страха и паники. Резонанс сердечно-сосудистой системы находится примерно в этом диапазоне. Мы думаем, что поэтому, когда приходят тайфуны, многие люди чувствуют дискомфорт, замечают боли в сердце. Это как раз влияние «голоса моря».
Через знакомых медиков я пытался найти информацию, связанную с тем, как изменяется количество вызовов «скорой помощи» перед приходом тайфуна, чтобы найти корреляцию. Но пока эти данные получить не удалось.
Но мы надеемся, что вопрос решится: это было бы очень интересно и полезно, к тому же нужно не только нам, но и нашим властям, и мы надеемся на их поддержку в этом вопросе.
Если установить закономерности, а они есть, то можно задолго до прихода тайфуна, сразу с появлением микросейсм, предупреждать людей, страдающих определенными заболеваниями, чтобы они успели принять превентивные меры.
Мы наблюдаем отдельные случаи, когда случаются внезапные инфаркты, людей накрывает волной немотивированной паники. А недавно после публичной лекции ко мне подошел мужчина, который рассказал, что несколько лет назад в море судно, на котором он находился, попало в шторм. Многие из экипажа чувствовали себя очень плохо, а один мужчина – здоровяк, занимавшийся спортом, умер от сердечного приступа. Это явно влияние «голоса моря».
Экономический расчет
– Представим идеальную ситуацию: у науки неограниченное финансирование, достаточное количество приборов, бизнес и власть с удовольствием сотрудничают. В каких областях экономики ваши приборы могли бы еще пригодится?
– Если использовать весь комплекс приборов, можно решать конкретные задачи, связанные с прогнозированием тайфунов, цунами, землетрясений.
Кроме того, интерференционные методы используются в промышленности. Допустим, когда вам нужно добиться очень высокой точности, до микрона, при обработке каких-то деталей.
Какое-то время назад были разговоры о том, что японцы, якобы, обработали винты российских подводных лодок так, что шумность упала и акустические приборы стали намного хуже улавливать их движение. Такое, действительно возможно.
Около 7 лет назад мы установили лазерный деформограф на одной из угольных шахт в Сибири.
Сами понимаете, что датчики метана в шахтах почти бесполезны. Что там происходит? Медленная деформация вызывает медленное поступление метана. В этом случае его можно откачать. Но когда случается резкая, скачкообразная деформация, происходит резкий выброс метана, который приводит к взрыву и гибели людей. Главное, что нужно делать – следить за развитием деформаций, это позволит прогнозировать выбросы метана и избежать трагедий. Поэтому на всех шахтах, где происходят выбросы метана, необходимо иметь подобные приборы.
Если взять цунами или волны-убийцы, то они опасны для рыбного хозяйства, марифермеров. Если с помощью искусственного интеллекта отслеживать появление микросейсм, то можно заранее предупреждать об опасности.
– Как часто бизнес и власти обращаются к ученым за помощью?
– Не так часто, как хотелось бы, хотя есть крупные и мелкие проекты, в которых мы могли бы помогать.
Взять хотя бы остров Русский. Сейчас там работают очистные сооружения, которые сбрасывают в бухту Новик очищенную пресную воду, это приводит к тому, что бухта опресняется, постепенно превращается в болото. Есть проект, по которому очистные планируется вывести дальше - в открытую часть моря. Но для этого нужно провести качественные долгосрочные наблюдения: какие течения возникают в определенных гидрологических слоях, в определенное время при определенных условиях, чтобы минимизировать экологические последствия.
В планах строительство на Русском аквапарка, гостиничного комплекса, но предусмотрен ли широкий пляж? Однажды я видел, как делают искусственный пляж. Никто не возит туда песок. Ученые проводят исследования, рассчитывая, как так называемые «краевые волны» формирует береговую структуру в конкретном месте. Измеряются периоды и амплитуда волн, на основе специальных вычислений перпендикулярно берегу строятся бетонные полосы. Буквально через два года волны приносит на берег песок и камни. И вот, вместо 5-метрового пляжа «за копейки» готов пляж шириной 30-50 метров.
Таких примеров, когда ученые могут сделать практические вещи для развития народного хозяйства, можно привести массу. И мы готовы этим заниматься.
Евгения СтепановаТайфуны, которые ежегодно приходят в дальневосточный регион, приносят разрушения и наводнения, ущерб от них исчисляется десятками, а то и сотнями миллионов рублей. Еще больший вред приносят сильные цунами и землетрясения, которые, по счастью, случаются куда реже. Между тем, в арсенале науки появляются средства, которые могут быть использованы для прогнозирования опасных природных явлений. Как далеко продвинулись в своих исследованиях ученые, EastRussia спросила у заместителя председателя Дальневосточного отделения Российской академии наук, директора Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН (ТОИ ДВО РАН), академика РАН Григория Долгих.
От космоса до океана
– Григорий Иванович, есть ли в арсенале ученых какая-то аппаратура, с помощью которой можно предсказывать природные катастрофы?
– В Приморском крае на морской экспериментальной станции ТОИ ДВО РАН установлен комплекс приборов. Это лазерные деформографы, которые могут регистрировать смещения земной коры с точностью 10 пикометров (пикометр – одна триллионная часть метра – прим. ред.), лазерный нанобарограф – для регистрации изменений давления в атмосфере, и еще один прибор, который может фиксировать вариации давления в гидросфере.
Их создание стало возможным благодаря изобретению частотно-стабилизированных лазеров, обеспечивающих очень высокую точность измерений – условно, от 0 Герц.
Сейчас в мире чаще всего используются широкополосные сейсмографы, которые работают по принципу маятника. Как работает лазерный деформограф: есть две точки на земной коре, между ними бежит луч лазера, который с помощью интерференции снимает информацию, измеряя таким образом расстояние между двумя точками. Приборы могут стоять в любом месте, и измерять любые колебания. Это очень точный метод измерения – 10 в «минус» 24 степени метра. Размер атома 10 в «минус» десятой степени, а эти измерения еще точнее.
В 2017 году Нобелевскую премию по физике получили ученые из США из проекта LIGO. Им удалось зафиксировать гравитационные волны, запущенные столкновением двух черных дыр в космосе, в миллиарде световых лет от Земли. Для этого специалистами были разработаны большие, четырехкилометровые, приборы.
Наш прибор работает по такому же принципу, но отличается технически. В приборах проекта LIGO массивные зеркала, между которыми измеряется смещение, висят. В наших – стоят на поверхности Земли. К тому же они меньше – самый большой деформограф 52,5 метра в длину.
Работать над ним мы начали в 1979 году с помощью специалистов из Всероссийского НИИ физико-технических измерений «Дальстандарт». Сейчас мы делаем и разрабатываем такую, и не только такую, но более точную и современную аппаратуру, самостоятельно.
На основе лазерного деформографа был создан измеритель вариаций давления гидросферы. Главная его особенность в том, что он может «слышать» глубокий инфразвук. В приборе находится мембрана в нейтральном положении. Когда на нее давит вода, она «играет». Находящиеся внутри лазерный интерферометр и лазерная система регистрации с высокой точностью измеряют давление в воде. Эти измерения могут быть важны не только для научных изысканий, но и для прикладных областей, например, можно понять, что в воде находятся искусственные объекты.
Такими приборами мы можем измерять минутные, часовые, суточные и даже вековые колебания. Но, конечно, ни один прибор так долго еще работал. Так, лазерный деформограф работает стационарно с 2000 года.
Опасные подвижки и случайные открытия
– Жителей прибрежных регионов волнуют бедствия, вызванные цунами. Какие методы их прогнозирования существуют?
– Классический пример: под водой в земной коре происходит землетрясение магнитудой 7,2, делается предупреждение об опасности цунами. Предупреждение делают по географическому принципу и магнитуде – в разных регионах эта величина разная, но в основном считается, что цунами может вызвать землетрясение магнитудой от 7-7,2. Это не совсем так. Цунами вызывают поршневые подвижки дна вправо и влево, скользящие или вертикальные. Чтобы понять, ждать ли цунами, надо зарегистрировать не само землетрясение, а эти подвижки.
Наш лазерный деформограф – единственный в мире прибор, который точно может это сделать. В прошлом и позапрошлом годах наши ученые выпустили ряд публикаций в научных изданиях, где, основываясь на расчетах американских исследователей после конкретного сейсмособытия, это доказали. Тогда мы смогли на большом расстоянии – 17 000 километров – определить произошедшую величину смещения дна.
Высота цунами зависит от глубины моря. Если метровая подвижка произошла на глубине пяти метров, то никакого цунами не будет. А если на глубине трех километров… Представляете, какая масса воды сдвинулась? Это может привести к очень приличному цунами.
Но если брать скорость волны цунами, то она примерно в 10 раз меньше скорости самой деформационной аномалии. Этот люфт во времени может помочь прогнозировать опасные явления.
– Это уже происходит?
– 26 декабря 2004 года в Индийском океане произошло землетрясение, вызвавшее смертоносное цунами, которое унесло жизни около 300 000 человек. Перед катастрофой деформографом была сделана запись, на которой отчетливо видно «ступеньку». Интересно, что работавший в этом же районе широкополосный японский сейсмограф ничего подобного не зарегистрировал.
Мы, конечно, предполагали, что можем «увидеть» эту подвижку, но конкретных примеров не было. Открытие было сделано, можно сказать, случайно. В 2007 году я начал обрабатывать информацию, начал искать, с чем она могла бы быть связана. Оказалось – с землетрясением в Индийском океане. «Ступенька» пришла к нам всего через 5-7 минут после толчка, скорость распространения данных была примерно 5 700 метров в секунду. А до побережья цунами добралось через два часа. Это время можно использовать для того, чтобы минимизировать его последствия.
Сейчас мы в институте планируем заняться тем, чтобы регистрировать такие подвижки в автоматическом режиме: прибор пишет, и в это же время нейросеть обрабатывает показания.
Чем опасен «голос моря»
– Как быть с тайфунами? Синоптики с большой долей вероятности могут предсказать, как поведет себя сформировавшийся тайфун, куда она пойдет, какое количество осадков принесет. Но можно ли предсказать их зарождение заранее?
– Еще в 1935 году советский геофизик Василий Шулейкин обнаружил явление, которое назвал «голос моря» - в атмосфере в районе прибрежной полосы был обнаружен звук в районе 7-8-9 Гц. Считается, что при определенной скорости ветра и определенной высоте волны возникают инфразвуковые колебания в атмосфере. Они действуют на земную кору, а сигнал по земной коре мы можем улавливать быстрее, чем по воздуху и воде.
Лазерные деформограф и нанобарограф могут регистрировать зоны образования этих волн, но природа самого явления до сих пор остается неизвестной. Кроме того, несколько лет назад мы обнаружили предвестники «голоса моря» – микросейсмы. При движении тайфуна они возникают в разных точках. Физику этого процесса также пока не удалось объяснить. Со временем мы разберемся, тем более что это может иметь очень большое значение.
Каждый орган человека имеет свой резонанс. Резонанс головы – 20-30 Гц, глаза – 40-100 Гц, 6-8 Гц – почек. 5-7 Гц вызывают у человека чувство страха и паники. Резонанс сердечно-сосудистой системы находится примерно в этом диапазоне. Мы думаем, что поэтому, когда приходят тайфуны, многие люди чувствуют дискомфорт, замечают боли в сердце. Это как раз влияние «голоса моря».
Через знакомых медиков я пытался найти информацию, связанную с тем, как изменяется количество вызовов «скорой помощи» перед приходом тайфуна, чтобы найти корреляцию. Но пока эти данные получить не удалось.
Но мы надеемся, что вопрос решится: это было бы очень интересно и полезно, к тому же нужно не только нам, но и нашим властям, и мы надеемся на их поддержку в этом вопросе.
Если установить закономерности, а они есть, то можно задолго до прихода тайфуна, сразу с появлением микросейсм, предупреждать людей, страдающих определенными заболеваниями, чтобы они успели принять превентивные меры.
Мы наблюдаем отдельные случаи, когда случаются внезапные инфаркты, людей накрывает волной немотивированной паники. А недавно после публичной лекции ко мне подошел мужчина, который рассказал, что несколько лет назад в море судно, на котором он находился, попало в шторм. Многие из экипажа чувствовали себя очень плохо, а один мужчина – здоровяк, занимавшийся спортом, умер от сердечного приступа. Это явно влияние «голоса моря».
Экономический расчет
– Представим идеальную ситуацию: у науки неограниченное финансирование, достаточное количество приборов, бизнес и власть с удовольствием сотрудничают. В каких областях экономики ваши приборы могли бы еще пригодится?
– Если использовать весь комплекс приборов, можно решать конкретные задачи, связанные с прогнозированием тайфунов, цунами, землетрясений.
Кроме того, интерференционные методы используются в промышленности. Допустим, когда вам нужно добиться очень высокой точности, до микрона, при обработке каких-то деталей.
Какое-то время назад были разговоры о том, что японцы, якобы, обработали винты российских подводных лодок так, что шумность упала и акустические приборы стали намного хуже улавливать их движение. Такое, действительно возможно.
Около 7 лет назад мы установили лазерный деформограф на одной из угольных шахт в Сибири.
Сами понимаете, что датчики метана в шахтах почти бесполезны. Что там происходит? Медленная деформация вызывает медленное поступление метана. В этом случае его можно откачать. Но когда случается резкая, скачкообразная деформация, происходит резкий выброс метана, который приводит к взрыву и гибели людей. Главное, что нужно делать – следить за развитием деформаций, это позволит прогнозировать выбросы метана и избежать трагедий. Поэтому на всех шахтах, где происходят выбросы метана, необходимо иметь подобные приборы.
Если взять цунами или волны-убийцы, то они опасны для рыбного хозяйства, марифермеров. Если с помощью искусственного интеллекта отслеживать появление микросейсм, то можно заранее предупреждать об опасности.
– Как часто бизнес и власти обращаются к ученым за помощью?
– Не так часто, как хотелось бы, хотя есть крупные и мелкие проекты, в которых мы могли бы помогать.
Взять хотя бы остров Русский. Сейчас там работают очистные сооружения, которые сбрасывают в бухту Новик очищенную пресную воду, это приводит к тому, что бухта опресняется, постепенно превращается в болото. Есть проект, по которому очистные планируется вывести дальше - в открытую часть моря. Но для этого нужно провести качественные долгосрочные наблюдения: какие течения возникают в определенных гидрологических слоях, в определенное время при определенных условиях, чтобы минимизировать экологические последствия.
В планах строительство на Русском аквапарка, гостиничного комплекса, но предусмотрен ли широкий пляж? Однажды я видел, как делают искусственный пляж. Никто не возит туда песок. Ученые проводят исследования, рассчитывая, как так называемые «краевые волны» формирует береговую структуру в конкретном месте. Измеряются периоды и амплитуда волн, на основе специальных вычислений перпендикулярно берегу строятся бетонные полосы. Буквально через два года волны приносит на берег песок и камни. И вот, вместо 5-метрового пляжа «за копейки» готов пляж шириной 30-50 метров.
Таких примеров, когда ученые могут сделать практические вещи для развития народного хозяйства, можно привести массу. И мы готовы этим заниматься.
Ольга Шевченко человек не новый для Приморского океанариума. Она работает в учреждении более 10 лет, занимала за это время разные должности – ученого секретаря, заместителя директора по научной работе, руководителя службы экологического просвещения. Является организатором всех эколого-просветительских проектов Приморского океанариума. Кандидат биологических наук, доцент. Избрана директором океанариума полгода назад, и, похоже, за эти шесть месяцев климат в нашумевшем учреждении начал меняться.
– Ольга Геннадьевна, прошлый год для океанариума – сплошная черная полоса: гибель животных, скандалы внутри коллектива, увольнения. Вам не страшно было принимать хозяйство с таким «наследством»?
– У меня было понимание ситуации изнутри и видение того, в каком направлении развиваться. Первое, что мы сделали, это обозначили четкий курс на развитие науки и просвещения на базе Приморского океанариума. Безусловно, коллеги до меня проделали немалый путь в этом направлении, но сейчас стоит задача углубить и расширить научную составляющую, тем более, что мы обладаем прекрасной базой для этого. В первую очередь, это богатейшая коллекция различных гидробионтов, которая позволяет проводить научные работы различного уровня. Второе – укомплектованные современным научным оборудованием лаборатории, на площадке которых мы готовы принимать исследователей со всей страны по направлению морская биология. В-третьих, – кадры, а они, как известно, решают всё. В этом году принято решение выделить средства на поддержку научно-исследовательских работ, проводимых нашими сотрудниками. Итоги будут подведены в конце года, а размер премии будет напрямую зависеть от публикационной активности исследователя.
– Какие задачи вам пришлось решать в первую очередь?
– Самая первая задача, которую мне пришлось решать с первого дня работы в новой должности – это сохранение коллектива и поиск специалистов нашего профиля. Большую часть вакансий мы закрыли. Частично важные позиции были закрыты с помощью коллег из центральной части России, которые переехали во Владивосток для работы в океанариуме, и это оказалось очень здорово, поскольку от них мы получили мощную поддержку в виде опыта, свежих идей и решений, нового видения старых проблем.
Сегодня мы все еще продолжаем укомплектовывать штат кадрами. В океанариуме востребованы очень узкопрофильные профессии – тренеры и ветеринары морских млекопитающих, таких специалистов – единицы на Дальнем Востоке. Предпринимаем важные шаги в сторону обучения и переобучения кадрового состава. Сейчас заключено соглашение с Институтом Мирового океана Дальневосточного федерального университета, в рамках которого будет осуществляться подготовка кадров по инженерным направлениям. Очень рады видеть студентов-биологов на практику и готовы предоставить им работу после завершения обучения в вузах.
– Самые громкие новости об океанариуме касались содержания животных, общественность бурно реагирует каждый раз, когда погибают морские млекопитающие или рыбы. Какие шаги вами были приняты, чтобы улучшить условия жизни питомцев?
– Сохранение здоровья наших подопечных стоит на повестке дня ежедневно. Мы пересмотрели рационы питания, усилили ветеринарный контроль за состоянием животных и условиями их содержания, провели дорогостоящий ремонт танков, в которых они содержатся, увеличили физические нагрузки для млекопитающих в рамках программы поддержания их здоровья, постоянно проводим обогащение среды обитания. Самое главное – у нас есть полное понимание со специалистами, которые ежедневно напрямую работают с гидробионтами. Это особенные люди, ведь работать с морскими животными дано не каждому, и работать просто, чтобы отбыть положенное количество рабочих часов, у них не получается. В океанариуме остаются те, кто пришел сюда по призванию, и, к счастью, таких людей немало.
И с рыбами тоже не все так просто. Это только кажется на первый взгляд, что рыба не чувствует, плавает в воде, ест, смотрит на вас. Необходимость вступать с гидробионтами в «диалог», приводит к тому, что специалисту нужно «стать своим» для них, научиться вести себя так, чтобы вызвать полное доверие, поскольку животное, будь то скат, калуга, ауха, акула или морж, не подпустят того, кого боится. На то, чтобы достичь взаимодействия только с одной особью, может уйти несколько лет.
Мы прилагаем все усилия к тому, чтобы нашим подопечным жилось у нас максимально комфортно, в условиях приближенным к природным. Не перестаю повторять фразу, что мы – обслуживающий персонал для наших животных. Природоохранная прокуратура, под чутким контролем которой мы исправляли выявленные недочеты, нашей работой довольна, и я считаю это большим достижением.
– Почему все-таки животные гибнут в искусственных условиях?
– По разным причинам. Слабо изученные наукой виды, отсутствие высококлассных профессионалов по определенным группам гидробионтов, недостаточно опыта. Очень сложно содержать животных, которые живут в среде, чуждой для человека. Мы, человечество, еще очень многого не знаем о Мировом океане. И человеческий фактор, а на самом деле – невнимательность, халатность, тоже могут быть этими причинами.
Этой весной мы потеряли детеныша тихоокеанской афалины, и это было очень больно, мы все сильно переживали потерю. Он родился в нашем океанариуме, и это редчайший случай, исчисляемый в мире единицами. Ученые широко в мире изучают китообразных, но накопленных сведений по изучению их жизни пока недостаточно. Задача науки – сохранить и увеличить число морских млекопитающих, поскольку для нормального функционирования Мирового океана система должна быть равновесной, а это означает, что все виды животных, которые в ней сейчас обитают, должны иметь все шансы благополучно жить и дальше. Наш научно-образовательный комплекс справляется с задачей содержания китообразных в условиях искусственного и полувольного содержания, что может быть хорошим подспорьем для проведения научных исследований.
– Та точка зрения, которую вы сейчас транслируете, противоречит общепринятой - что дельфинарии и зоопарки содержат животных на потеху публике…
– Здесь необходимо понять, какова изначально была цель строительства Приморского океанариума. Он был задуман и построен как подразделение Национального научного центра морской биологии им. А. В. Жирмунского ДВО РАН по указу Президента Российской Федерации. Приморский океанариум – единственный в стране, который входит в систему Министерства науки и высшего образования. А идея открыть такую научную базу принадлежала академику РАН, директору Института биологии моря ДВО РАН Владимиру Леонидовичу Касьянову. Он еще в 2004 году сформулировал основную концепцию проекта – океанариума, который будет заниматься наукой и образованием. И это было целесообразно: многие исследования можно выполнять не в экспедициях, а в экспозициях. Сегодня, спустя 20 лет, даже те океанариумы, которые открывались как коммерческие, сегодня занимаются просвещением и образованием. И это мировой тренд современности. Приморский океанариум – не развлекательный комплекс, хотя многие программы для детей мы делаем в игровой форме, чтобы доступно преподнести материал даже дошкольнику. Мы в первую очередь – научное и эколого-просветительское учреждение.
– Какие направления науки развиваются в океанариуме?
– На базе океанариума работает Центр коллективного пользования, в котором проводятся исследования по ряду научных направлений. Большая многолетняя работа ведется по изучению фитопланктона в прибрежных водах острова Русский. Микроводоросли используют для оценки качества и состояния водной среды. Наши специалисты обнаружили около 20 новых для вод России и Японского моря видов микроводорослей. Данные о них представлены на российских и зарубежных конференциях и симпозиумах. На основании этих исследований написано три десятка научных работ, защищены магистерские и кандидатские диссертации.
Наши специалисты в ходе исследования морфологии клеток крови белух установили наличие клеток, ранее не описанных в специальной литературе. Они называются базофилы – это крупные лейкоциты, или белые клетки крови. Была проведена работа по фотофиксации и описанию базофилов, сейчас планируется издать гематологический атлас, в котором будет собрана полная информация о клетках морских млекопитающих. Это поможет следить за состоянием здоровья животных, содержащихся в искусственной среде и в естественных условиях.
Еще один серьезный научный интерес связан с гидроакустикой, исследования проходят с привлечением белух. Эти разработки ведутся совместно с ННЦМБ ДВО РАН, Тихоокеанским филиалом ВНИРО и ДВФУ. Ученые работают над снижением уровня конфликта рыболовства и морских млекопитающих. Не секрет, что многие морские млекопитающие погибают во время добычи промысла рыбы, при этом наносят вред рыболовству, портят орудия лова, уменьшают вылов. На нашей Базе исследования морских млекопитающих мы можем отработать некоторые действия, которые позволят безопасно отводить белух, ластоногих, касаток от рыболовецких судов, сохранив их популяцию и не причиняя ущерба рыболовству.
Но только на морской биологии мы не останавливаемся. Сейчас мы плотно сотрудничаем с Ботаническим садом-институтом ДВО РАН, несмотря на то, что у нас разные профили. Мы предоставляем свою территорию, размер которой составляет более 37 000 квадратных метров, под научные проекты. Вместе со специалистами Ботсада мы начали высаживать реликтовые растения. Первым проектом стала закладка рощи гинкго двулопастного, который будет активно использоваться нами в просвещении и образовании. В будущем году запланированы закладка экспозиции «приморские луга», для посетителей она будет выглядеть эффектно, как колосящееся разнотравье, а для наших коллег представляет сугубо научный интерес.
– Борьба за экологию, воспитание экологического сознания сегодня один из мировых трендов. Его реализуют как специальные общественные и государственные, так и бизнес-организации. Как выстроен этот процесс в Приморском океанариуме?
– Экологическое просвещение – это наша гордость и то направление, которым мы известны далеко за пределами Приморского края. Одной из вершин в этом деле стало получение национальной экологической премии имени В.И. Вернадского за высокие достижения в области экологии и охраны окружающей среды. Началось все 10 лет назад с обычных занятий типа биологических кружков для детей. За годы мы аккумулировали и преобразовали опыт работы в общеобразовательных школах, опыт ученых и собственные наработки в уникальные просветительские программы для детей разного возраста. Дети, посещая океанариум и наши просветительские программы, получают представление об окружающем мире, Мировом океане и его обитателях. Эта работа объединяет весь коллектив Приморского океанариума: на занятия к ребятам приходят наши водолазы, тренеры морских млекопитающих, биологи.
Вначале этого пути мы были убеждены, что делаем хорошее и важное для общества дело: показываем, какой водный мир многообразный, красивый и вместе с тем очень хрупкий. Сегодня при каждом океанариуме или зоопарке есть подобные занятия, мастер-классы и программы, но в 2013 году мы были практически единственными в стране, кто предложил такой формат работы с детьми на научной основе.
– Вернемся к морским млекопитающим и гидробионтам, которые содержатся в Приморском океанариуме, как вы говорите, для науки. Это вполне гуманное и логически понятное объяснение, которое, как минимум, имеет место быть. И все-таки: что должно случиться, чтобы звери были выпущены в родную среду?
– Вопрос с животными, которые много лет жили в искусственной среде, неоднозначный. На нашей Базе исследования морских млекопитающих не раз происходило так, что несколько особей уходили из вольерных комплексов в открытое море, но спустя какое-то время самостоятельно возвращались. Это говорит о том, что животные выбирали Базу как наиболее комфортное место обитания. Более того, они сразу же встраивались в тренировочный процесс, прекрасно помня все наработки даже спустя год после своего отсутствия.
Приморский океанариум ведет деятельность по охране редких и исчезающих видов животных, а также способствует увеличению популяций разных видов гидробионтов. Это уже известная история, как к нам попал северный морской лев – сивуч Айк. Ученые нашли его в 2012 году на лежбище острова Тюлений Сахалинской области в трехмесячном возрасте. По неизвестной причине мама оставила его, но не исключено, что она стала жертвой касаток или акулы. Ученые начали наблюдать за малышом, который пытался прикармливаться у других самок – такое у них случается. Однако, сородичи начали проявлять к нему агрессию, было принято решение незамедлительно передать детеныша Приморскому океанариуму.
Мы успешно разводим пингвинов Гумбольдта, занесенных в Красную книгу Международного союза охраны природы. Благодаря комфортным условиям содержания в океанариуме, птицы объединяются в пары, высиживают яйца и дают потомство. Более того, Приморский океанариум – единственное место в стране, где определяется пол птенцов пингвинов. Наши специалисты используют молекулярно-генетический метод как наиболее щадящий – при помощи буккального мазка из защёчной области.
Наши воспитанники, ученики студии «Белёк» Приморского океанариума, участвуют в возобновлении популяции лососёвых рыб. Каждую весну они отправляются на рыбоводный завод для выпуска молоди кеты в реку Барабашевка Партизанского района Приморского края.
Доброй историей этой весной стала передержка краснокнижной дальневосточной черепахи Pelodiscus maackii в океанариуме. Она была найдена в минусовые температуры в черте города неравнодушными людьми и поселилась в Приморском океанариуме под наблюдением ветеринаров и биологов на два месяца. За это время мы ее подлечили, выкормили и затем выпустили в естественную среду обитания в пойму реки Раздольная – там обитает небольшая популяция этого вида.
В наших стенах родился морской котик Марио, недавно мы отметили его трехлетие. За три года он вырос в настоящего артиста, и наравне со взрослыми принимает полноценное участие в демонстрации навыков морских млекопитающих.
Я уверена, что в Приморском океанариуме сформировался слаженный профессиональный коллектив, главные ценности которого – изучение и создание условий для долгой и комфортной жизни животных!
Первым в инновационном научно-технологическом центре (ИНТЦ) «Русский», который запустят в Приморье к 2030 году, начнет работать направление «Биомедицина». Резиденты Центра — фармацевтические компании — смогут быстрее разрабатывать и выводить на рынок новые технологии. Но что это даст обычным людям? И как повлияет на отечественную науку в целом?
Во-первых, в комплекс «Биомедицина» ИНТЦ «Русский» войдут несколько функционально связанных между собой корпусов. Каждый будет специализироваться на конкретном типе продукта. Например, задача Центра геномной и регенеративной медицины — использовать генетические и клеточные технологии для борьбы, прежде всего, со считавшимися до недавнего времени неизлечимыми недугами — онкологическими и нейродегенеративными заболеваниями.
Клетки, полученные от пациентов в клинике на первом этаже, будут использованы для создания принципиально новых биомедицинских продуктов. Патологически измененные клетки, в том числе полученные из опухолей, — для выявления молекулярных причин заболевания и подбора индивидуальных химотерапевтических препаратов.
Здоровые клетки пойдут на производство биомедицинских клеточных продуктов – фактически, заготовок для тканей и фрагментов органов человека. Они будут выращиваться в лаборатории путем клонирования на клеточном уровне.
Сохраненные клетки также могут быть направлены в Центр биомедицинской инженерии. Там из них будут создавать генетически-модифицированные системы для тестирования новых лекарств. Этот процесс далее будет проходить в Центре фармакологии и биоиспытаний.
Также в составе комплекса планируется корпус-интегратор всех процессов — своего рода витрина, стартовая площадка и место коммуникации разработчиков, промышленников и потребителей. Здесь разместятся офисы биомедицинских и фармацевтических компаний, совместные исследовательские центры базовых резидентов и научно-образовательные центры и лаборатории ДВФУ.
Таким образом, в рамках НОК будет проводиться полный цикл разработки и проверки на жизнеспособность новой биомедицинской или фармацевтической технологии. Такая интеграция очень важна для предпринимателей. Они получат доступ не только ко всей необходимой инфраструктуре, но и к экспертам, а также возможность «подсмотреть» за разработками университетских стартапов ДВФУ. Такой комплексный подход поможет им быстрее выводить на рынок новые технологии.
Для университета биомедицина — это престижное направление работы, которым занимаются в крупных мировых вузах. Профильный научно-образовательный кластер ИНТЦ «Русский» завершит формирование биомедицинского кластера в ДВФУ. В этот кластер уже входят Институт наук о жизни и биомедицины, Медицинский центр и Школа медицины.
В масштабах же государства задача направления «Биомедицина» ИНТЦ «Русский» — создавать инновационные продукты для отечественного рынка, а также обеспечить вывод продуктов и технологий на рынки АТР. В новой медицинской среде будут работать множество игроков биомедицинского рынка, включая клиники и специализированные производства. А предпринятые меры поддержки — особый правовой статус, освобождение от налога на добавленную стоимость, на прибыль и имущество, а также размер страховых взносов в 14% — будут мотивировать компании открывать на территории научно-образовательного кластера собственное опытно-промышленное производство и исследовательские центры.
Тайфуны, которые ежегодно приходят в дальневосточный регион, приносят разрушения и наводнения, ущерб от них исчисляется десятками, а то и сотнями миллионов рублей. Еще больший вред приносят сильные цунами и землетрясения, которые, по счастью, случаются куда реже. Между тем, в арсенале науки появляются средства, которые могут быть использованы для прогнозирования опасных природных явлений. Как далеко продвинулись в своих исследованиях ученые, EastRussia спросила у заместителя председателя Дальневосточного отделения Российской академии наук, директора Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН (ТОИ ДВО РАН), академика РАН Григория Долгих.
От космоса до океана
– Григорий Иванович, есть ли в арсенале ученых какая-то аппаратура, с помощью которой можно предсказывать природные катастрофы?
– В Приморском крае на морской экспериментальной станции ТОИ ДВО РАН установлен комплекс приборов. Это лазерные деформографы, которые могут регистрировать смещения земной коры с точностью 10 пикометров (пикометр – одна триллионная часть метра – прим. ред.), лазерный нанобарограф – для регистрации изменений давления в атмосфере, и еще один прибор, который может фиксировать вариации давления в гидросфере.
Их создание стало возможным благодаря изобретению частотно-стабилизированных лазеров, обеспечивающих очень высокую точность измерений – условно, от 0 Герц.
Сейчас в мире чаще всего используются широкополосные сейсмографы, которые работают по принципу маятника. Как работает лазерный деформограф: есть две точки на земной коре, между ними бежит луч лазера, который с помощью интерференции снимает информацию, измеряя таким образом расстояние между двумя точками. Приборы могут стоять в любом месте, и измерять любые колебания. Это очень точный метод измерения – 10 в «минус» 24 степени метра. Размер атома 10 в «минус» десятой степени, а эти измерения еще точнее.
В 2017 году Нобелевскую премию по физике получили ученые из США из проекта LIGO. Им удалось зафиксировать гравитационные волны, запущенные столкновением двух черных дыр в космосе, в миллиарде световых лет от Земли. Для этого специалистами были разработаны большие, четырехкилометровые, приборы.
Наш прибор работает по такому же принципу, но отличается технически. В приборах проекта LIGO массивные зеркала, между которыми измеряется смещение, висят. В наших – стоят на поверхности Земли. К тому же они меньше – самый большой деформограф 52,5 метра в длину.
Работать над ним мы начали в 1979 году с помощью специалистов из Всероссийского НИИ физико-технических измерений «Дальстандарт». Сейчас мы делаем и разрабатываем такую, и не только такую, но более точную и современную аппаратуру, самостоятельно.
На основе лазерного деформографа был создан измеритель вариаций давления гидросферы. Главная его особенность в том, что он может «слышать» глубокий инфразвук. В приборе находится мембрана в нейтральном положении. Когда на нее давит вода, она «играет». Находящиеся внутри лазерный интерферометр и лазерная система регистрации с высокой точностью измеряют давление в воде. Эти измерения могут быть важны не только для научных изысканий, но и для прикладных областей, например, можно понять, что в воде находятся искусственные объекты.
Такими приборами мы можем измерять минутные, часовые, суточные и даже вековые колебания. Но, конечно, ни один прибор так долго еще работал. Так, лазерный деформограф работает стационарно с 2000 года.
Опасные подвижки и случайные открытия
– Жителей прибрежных регионов волнуют бедствия, вызванные цунами. Какие методы их прогнозирования существуют?
– Классический пример: под водой в земной коре происходит землетрясение магнитудой 7,2, делается предупреждение об опасности цунами. Предупреждение делают по географическому принципу и магнитуде – в разных регионах эта величина разная, но в основном считается, что цунами может вызвать землетрясение магнитудой от 7-7,2. Это не совсем так. Цунами вызывают поршневые подвижки дна вправо и влево, скользящие или вертикальные. Чтобы понять, ждать ли цунами, надо зарегистрировать не само землетрясение, а эти подвижки.
Наш лазерный деформограф – единственный в мире прибор, который точно может это сделать. В прошлом и позапрошлом годах наши ученые выпустили ряд публикаций в научных изданиях, где, основываясь на расчетах американских исследователей после конкретного сейсмособытия, это доказали. Тогда мы смогли на большом расстоянии – 17 000 километров – определить произошедшую величину смещения дна.
Высота цунами зависит от глубины моря. Если метровая подвижка произошла на глубине пяти метров, то никакого цунами не будет. А если на глубине трех километров… Представляете, какая масса воды сдвинулась? Это может привести к очень приличному цунами.
Но если брать скорость волны цунами, то она примерно в 10 раз меньше скорости самой деформационной аномалии. Этот люфт во времени может помочь прогнозировать опасные явления.
– Это уже происходит?
– 26 декабря 2004 года в Индийском океане произошло землетрясение, вызвавшее смертоносное цунами, которое унесло жизни около 300 000 человек. Перед катастрофой деформографом была сделана запись, на которой отчетливо видно «ступеньку». Интересно, что работавший в этом же районе широкополосный японский сейсмограф ничего подобного не зарегистрировал.
Мы, конечно, предполагали, что можем «увидеть» эту подвижку, но конкретных примеров не было. Открытие было сделано, можно сказать, случайно. В 2007 году я начал обрабатывать информацию, начал искать, с чем она могла бы быть связана. Оказалось – с землетрясением в Индийском океане. «Ступенька» пришла к нам всего через 5-7 минут после толчка, скорость распространения данных была примерно 5 700 метров в секунду. А до побережья цунами добралось через два часа. Это время можно использовать для того, чтобы минимизировать его последствия.
Сейчас мы в институте планируем заняться тем, чтобы регистрировать такие подвижки в автоматическом режиме: прибор пишет, и в это же время нейросеть обрабатывает показания.
Чем опасен «голос моря»
– Как быть с тайфунами? Синоптики с большой долей вероятности могут предсказать, как поведет себя сформировавшийся тайфун, куда она пойдет, какое количество осадков принесет. Но можно ли предсказать их зарождение заранее?
– Еще в 1935 году советский геофизик Василий Шулейкин обнаружил явление, которое назвал «голос моря» - в атмосфере в районе прибрежной полосы был обнаружен звук в районе 7-8-9 Гц. Считается, что при определенной скорости ветра и определенной высоте волны возникают инфразвуковые колебания в атмосфере. Они действуют на земную кору, а сигнал по земной коре мы можем улавливать быстрее, чем по воздуху и воде.
Лазерные деформограф и нанобарограф могут регистрировать зоны образования этих волн, но природа самого явления до сих пор остается неизвестной. Кроме того, несколько лет назад мы обнаружили предвестники «голоса моря» – микросейсмы. При движении тайфуна они возникают в разных точках. Физику этого процесса также пока не удалось объяснить. Со временем мы разберемся, тем более что это может иметь очень большое значение.
Каждый орган человека имеет свой резонанс. Резонанс головы – 20-30 Гц, глаза – 40-100 Гц, 6-8 Гц – почек. 5-7 Гц вызывают у человека чувство страха и паники. Резонанс сердечно-сосудистой системы находится примерно в этом диапазоне. Мы думаем, что поэтому, когда приходят тайфуны, многие люди чувствуют дискомфорт, замечают боли в сердце. Это как раз влияние «голоса моря».
Через знакомых медиков я пытался найти информацию, связанную с тем, как изменяется количество вызовов «скорой помощи» перед приходом тайфуна, чтобы найти корреляцию. Но пока эти данные получить не удалось.
Но мы надеемся, что вопрос решится: это было бы очень интересно и полезно, к тому же нужно не только нам, но и нашим властям, и мы надеемся на их поддержку в этом вопросе.
Если установить закономерности, а они есть, то можно задолго до прихода тайфуна, сразу с появлением микросейсм, предупреждать людей, страдающих определенными заболеваниями, чтобы они успели принять превентивные меры.
Мы наблюдаем отдельные случаи, когда случаются внезапные инфаркты, людей накрывает волной немотивированной паники. А недавно после публичной лекции ко мне подошел мужчина, который рассказал, что несколько лет назад в море судно, на котором он находился, попало в шторм. Многие из экипажа чувствовали себя очень плохо, а один мужчина – здоровяк, занимавшийся спортом, умер от сердечного приступа. Это явно влияние «голоса моря».
Экономический расчет
– Представим идеальную ситуацию: у науки неограниченное финансирование, достаточное количество приборов, бизнес и власть с удовольствием сотрудничают. В каких областях экономики ваши приборы могли бы еще пригодится?
– Если использовать весь комплекс приборов, можно решать конкретные задачи, связанные с прогнозированием тайфунов, цунами, землетрясений.
Кроме того, интерференционные методы используются в промышленности. Допустим, когда вам нужно добиться очень высокой точности, до микрона, при обработке каких-то деталей.
Какое-то время назад были разговоры о том, что японцы, якобы, обработали винты российских подводных лодок так, что шумность упала и акустические приборы стали намного хуже улавливать их движение. Такое, действительно возможно.
Около 7 лет назад мы установили лазерный деформограф на одной из угольных шахт в Сибири.
Сами понимаете, что датчики метана в шахтах почти бесполезны. Что там происходит? Медленная деформация вызывает медленное поступление метана. В этом случае его можно откачать. Но когда случается резкая, скачкообразная деформация, происходит резкий выброс метана, который приводит к взрыву и гибели людей. Главное, что нужно делать – следить за развитием деформаций, это позволит прогнозировать выбросы метана и избежать трагедий. Поэтому на всех шахтах, где происходят выбросы метана, необходимо иметь подобные приборы.
Если взять цунами или волны-убийцы, то они опасны для рыбного хозяйства, марифермеров. Если с помощью искусственного интеллекта отслеживать появление микросейсм, то можно заранее предупреждать об опасности.
– Как часто бизнес и власти обращаются к ученым за помощью?
– Не так часто, как хотелось бы, хотя есть крупные и мелкие проекты, в которых мы могли бы помогать.
Взять хотя бы остров Русский. Сейчас там работают очистные сооружения, которые сбрасывают в бухту Новик очищенную пресную воду, это приводит к тому, что бухта опресняется, постепенно превращается в болото. Есть проект, по которому очистные планируется вывести дальше - в открытую часть моря. Но для этого нужно провести качественные долгосрочные наблюдения: какие течения возникают в определенных гидрологических слоях, в определенное время при определенных условиях, чтобы минимизировать экологические последствия.
В планах строительство на Русском аквапарка, гостиничного комплекса, но предусмотрен ли широкий пляж? Однажды я видел, как делают искусственный пляж. Никто не возит туда песок. Ученые проводят исследования, рассчитывая, как так называемые «краевые волны» формирует береговую структуру в конкретном месте. Измеряются периоды и амплитуда волн, на основе специальных вычислений перпендикулярно берегу строятся бетонные полосы. Буквально через два года волны приносит на берег песок и камни. И вот, вместо 5-метрового пляжа «за копейки» готов пляж шириной 30-50 метров.
Таких примеров, когда ученые могут сделать практические вещи для развития народного хозяйства, можно привести массу. И мы готовы этим заниматься.
Девять миллионов литров воды и давление, на четверть превышающее расчетное рабочее. В Хабаровском крае успешно завершены гидравлические испытания строящейся резервной нитки подводного перехода (ППМН) второй очереди нефтепровода «Восточная Сибирь – Тихий океан» через Хор. В течение суток объект проверяли на прочность и еще 12 часов - на герметичность. Испытания подтвердили: переход надежен.
Дальневосточная восьмерка
Резервные подводные переходы прокладываются только на «сложных» реках - чтобы повысить эксплуатационную надежность нефтяной магистрали. Это емкое понятие подразумевает не только безаварийную и бесперебойную транспортировку углеводородного сырья, но и удобство контроля и обслуживания трубопровода, а также экологическую безопасность производства.
ВСТО-2, трасса которого проходит по Амурской области, ЕАО, Хабаровскому и Приморскому краям, пересекает множество ручьев и проток, озер и стариц, малых и больших рек. На 51 из них сооружены подводные переходы общей протяженностью 200 километров. Это практически десятая часть всей длины нефтепровода. Резервными нитками пока оснащены два – через Амур неподалеку от Хабаровска и через Биру в Еврейской автономии.
– Сейчас в финальную стадию вошла прокладка резервного перехода через Хор, – рассказывает Александр Минаков начальник управления капитального строительства ООО «Транснефть – Дальний Восток». – Завершается и строительство резервной нитки подводного перехода через Тунгуску в ЕАО. В 2024-м начнутся работы на Большой Уссурке и Уссури в Приморском крае, а в 2025-м – в Приамурье: на реках Зея и Бурея.
Прокладка ППМН – одна из самых трудных задач при сооружении объектов нефтетранспортной сферы.
Егор Ищенко, начальник отдела эксплуатации нефтепроводов ООО «Транснефть – Дальний Восток»:
– Для обеспечения контроля и безопасности подводных переходов в круглосуточном режиме проводится мониторинг с помощью автоматизированных систем управления магистрального нефтепровода. За каждой нефтеперекачивающей станцией закреплены зоны обслуживания магистрального нефтепровода и подводные переходы. На четырех наиболее крупных и сложных переходах есть специальные базы, так называемые «дома обходчиков», где также круглосуточное дежурство осуществляют сотрудники, ведущие непосредственный мониторинг ситуации на ППМН.
Приручая «чёрта»
– Когда строили основную нитку через Бурею, согласовывали работы с энергетиками: там расположена ГЭС, которая производит сброс воды и может замыть траншею, – вспоминает Марат Искандаров, заместитель начальника отдела капитального строительства ООО «Транснефть – Дальний Восток». - Сейчас на этой реке уже две ГЭС, и меры предосторожности возрастают. Зея – судоходная река, здесь необходимы согласования с местным речным пароходством. Уссури и Уссурка очень зависимы от паводков.
На Тунгуске при строительстве подводного перехода было обнаружено cелище, относящееся к культуре амурских чжурчжэней VIII-XII веков.
Пока археологи вели раскопки на обнаруженном селище чжурчжэней, работы были перенесены на другие участки. Хор – один из крупнейших притоков Уссури. Его название в переводе с языка местного аборигенного народа – удэгейского – означает «черт, злой дух». Помимо основного русла, которое он может менять, Хор имеет десятки проток.
Специалисты тщательно отслеживают русловые процессы на этой реке. И не зря: свежий пример – в прошлом году русло Хора сдвинулось в сторону так, что пришлось укреплять берега и ликвидировать размывы в створе подводного перехода на основной нитке. Поэтому проект резервной нитки ППМН разработали с учетом характера реки. Было решено разработать единую траншею и проложить основной дюкер не только через главное русло, но и через восемь проток.
Таким образом длина основного дюкера (часть трубопровода, которая находится под водой), состоящего из 11 плетей (несколько труб, сваренных «в нитку»), составила 2160 метров. К слову, ширина собственно русла Хора в месте перехода всего 135 метров. Кроме того, в проект вошла прокладка еще одного дюкера - через реку Кия (310 метров), обустройство камер пуска и приема средств очистки и диагностики трубопровода, а также двух узлов запорной арматуры.
Проверено и испытано
После каждого этапа – экспертный контроль качества работ, его ведут специалисты АО «Транснефть – Подводсервис». Качество сварки плетей также проверяют не раз, каждый шов. Потом для каждой плети проводят гидроиспытания.
– Затем каждая плеть диагностируется инспекционным прибором методом сухой протяжки специалистами «Транснефть – Диаскан». – продолжает Марат Искандаров. – Это необходимо для проверки качества сварных соединений. Также исследуется качество каждого сварного шва, которым плети дюкера соединяются при протяжке. Она начинается только после того, как проведена съемка, сняты отметки и подтверждены проектным институтом. Параллельно ведутся работы по инженерной защите берегов.
Для укладки дюкера в траншею к первой его плети приваривают оголовок, к которому прикреплен трос. Протаскивание идет с помощью лебедки. После того, как конструкция займет положенное место, оголовок отсоединяют. Чтобы дюкер во время эксплуатации не всплыл, его пригружают полукольцами из чугуна. Снова сверка проектных отметок, частичная присыпка – и второй этап гидроиспытаний. Затем дюкер засыпают.
На весь период строительства на площадках на берегах Хора организован производственный экологический контроль – чтобы минимизировать воздействие производственных объектов на окружающую природную среду. Дважды в год, с начала мая до конца июня и с сентября до конца октября работы выполняются с поправкой на нерест – люди и техника перемещаются из воды и охранной зоны рек на площадочные объекты.
Привести планету в порядок
Решение о строительстве резервных ниток на подводных переходах второй очереди магистрального трубопровода «Восточная Сибирь – Тихий океан» компания «Транснефть» приняла в 2016 году. Тогда уже шло расширение пропускной способности магистрали. Первой ласточкой проекта, который реализуется в рамках программы технического перевооружения и капитального ремонта, стал резервный переход через Амур. Он был введен в строй в 2019 году, как раз к выходу нефтепровода на проектную мощность.
Проект резервной нитки через Хор разработал институт «Тюменьгипротрубопровод». Его заказчиком выступила «Транснефть – Дальний Восток», предприятие-эксплуатант ВСТО-2. Строительные работы начались летом 2021 года. Общая протяженность нового перехода с включением пойменных участков составила 11,3 километра. Помимо этого, построены две перемычки, соединяющие основную и резервную нитки ППМН.
– После завершения строительства резервной нитки подводного перехода и соединения всех ее участков будет выполнена внутритрубная диагностика с очисткой полости трубопровода, пропуском профилемеров и диагностических приборов, – подводит итог Александр Минаков. – После вытеснения воды трубопровод подключат к основной нитке, заполнят нефтью и приступят к комплексному опробованию.
Сейчас объект готовится к вводу в эксплуатацию. Среди заключительных дел – рекультивация. Сначала техническая – на место вернут плодородный слой почвы, который был снят перед началом строительства, вывезут мусор, укрепят откосы. Потом биологическая – посев трав, подходящих к местным почвенно-климатическим условиям. Завершить строительство резервной нитки планируется к концу текущего года.
«Реализация проекта Ленского моста окажет положительное влияние на динамику экономики Якутии. В первую очередь, в связи со значительным повышением транспортной доступности всей территории республики снизится стоимость ввозимых товаров и продуктов. В том числе уменьшится объем предметов первой необходимости, который сейчас доставляют по «северному завозу». Это можно назвать своеобразным «эффектом высвобождения». Средства, которые сэкономит потребитель, будут направлены на покупку дополнительного объема товаров и услуг, что подстегнет развитие малого и среднего предпринимательства. Региональный бюджет также избавится от части трат на доставку грузов, которые ему приходится субсидировать. По сути, это дополнительные денежные ресурсы, которые правительство Якутии может направить на развитие инфраструктуры, социальные проекты и решение проблем в той же энергетике.
По этим же причинам наибольший эффект от строительства Ленского моста получит сельское хозяйство и промышленность республики. Товаропроизводители будут расходовать меньше средств на доставку своей продукции до потребителей, а вырученные средства позволят наращивать бизнес. Ровно тем же будут заниматься промышленники, только с одной поправкой. Во многом уровень добычи полезных ископаемых в республике ограничивается логистическими сложностями региона. Поэтому, как только откроются новые пути для вывоза природных ресурсов на рынки, произойдет резкий рост объёмов экспорта. А это – опять же дополнительный источник пополнения казны, в которую будут поступать налоги. Что немаловажно, мост даст стимул для прихода на рынки новых компаний и инвесторов, которые раньше видели сложности в связи с отсутствием необходимой инфраструктуры.
Если смотреть в макрорегиональном разрезе, то сразу несколько субъектов страны будут заинтересованы в использовании моста через Лену. Фактически это ключевой элемент по маршруту Якутск–Магадан. Объект свяжет два крупнейших округа России – Сибирский и Дальневосточный. Благодаря этому увеличится грузопоток – как автомобильный, так и железнодорожный. К примеру, путь для перевозчиков из Красноярского края сократится как минимум на тысячу километров – это экономия времени, денег, снижение расходов на топливо. Таким образом, торговля в этой части страны оживится.
Это естественным образом увеличит экспортный потенциал регионов Сибири и Дальнего Востока. Экономика Китая, которая сегодня нуждается в большом количестве энергоресурсов, чтобы продолжать рост, расширит объем закупок. Повысится спрос со стороны других азиатских стран. Все это органично сочетается с политическим и экономическим курсом, который проводит руководство России в рамках «разворота на Восток». Наличие логистической инфраструктуры в виде Ленского моста и подъездных путей к нему подтолкнет инвесторов вкладываться в новые неосвоенные месторождения в России. В конечном счете это приведет к росту занятости в регионах Дальнего Востока и Сибири, появлению новых и развитию уже имеющихся инфраструктурных объектов, что положительно скажется на социальном самочувствии жителей, приведет к демографическому росту и снизит отток трудоспособного населения оттуда».